Infografika o nevarnostih elektromagnetnih sevanjih

Raziskave

kalcij (39 od skupno 1352 raziskav)
"• Wireless systems increase radiofrequency radiation (RFR) in buildings. • Scientific evidence identifies adverse effects from RFR below regulatory limits. • Globally, some governments and public health agencies are reducing RFR exposures. • Low RFR best practices include wired technology instead of Wi-Fi, and corded phones. • Safer, sustainable strategies and solutions for “smart” buildings are feasible."
"Exposure to a radiofrequency electromagnetic field (RF-EMF) of 835 MHz (4.0 W/kg specific absorption rate (SAR) 5 h/day for 12 weeks) may affect hypothalamic presynaptic neurons in C57BL/6 mice. The number and size of the synaptic vesicles (SVs) in the hypothalamic presynaptic terminals were significantly decreased after RF-EMF exposure. Further, the density (SVs numbers/μm) of docking and fusing SVs in the active zones of the presynaptic terminal membrane was significantly decreased in hypothalamic neurons. The expression levels of synapsin I/II and synaptotagmin 1, two regulators of SV trafficking in neurons, were also significantly decreased in the hypothalamus. In parallel, the expression of calcium channel was significantly decreased. These changes in SVs in the active zones may directly decrease the release of neurotransmitters in hypothalamic presynaptic terminals."
Effect of radiofrequency radiation on reproductive health
Singh R et al, Indian J Med Res, december 2018
"Available data indicate that exposure to EMF can cause adverse health effects. It is also reported that biological effects may occur at very low levels of exposure. The RFR effect can be more intensified based on the range and duration of the exposure. The RFR can also exert adverse effects in the first few minutes. Persistent exposures of EMF radiation can result in health hazards because these radiations interfere with normal physiological and biological function of the body. EMF works as an environmental pollutant and has undesirable health effects on animals and humans."
"With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed."
Wi-Fi is an important threat to human health
Pall ML, Environ Res, julij 2018
"Repeated Wi-Fi studies show that Wi-Fi causes oxidative stress, sperm/testicular damage, neuropsychiatric effects including EEG changes, apoptosis, cellular DNA damage, endocrine changes, and calcium overload. Each of these effects are also caused by exposures to other microwave frequency EMFs, with each such effect being documented in from 10 to 16 reviews. Therefore, each of these seven EMF effects are established effects of Wi-Fi and of other microwave frequency EMFs."
"Mice subjected to non-modulated microwave exposure had significantly increased acetylcholinesterase activity and increased intracellular calcium and nitric oxide levels in the cerebral cortex and hippocampus, and also had increased glucose and corticosterone levels in blood compared to control mice. These non-modulated microwave-exposed mice exhibited anxiety-like and depression-like behaviours."
"Wi-Fi and mobile phone EMR placed within 10 cm of the cells induced excessive oxidative responses and apoptosis via TRPV1-induced cytosolic Ca2+ accumulation in the cancer cells. Using cell phones and Wi-Fi sources which are farther away than 10 cm may provide useful protection against oxidative stress, apoptosis and overload of intracellular Ca2+."
"Dozens of reviews and thousands of primary literature studies have shown the existence of many different non-thermal health effects of microwave and lower frequency electromagnetic fields (EMFs); however current safety guidelines and standards only recognize thermal effects. This leaves both individuals and companies unprotected, particularly with the very large increases in microwave frequency exposures that are occurring over time."
"This review considers a paradigm shift on microwave electromagnetic field (EMF) action from only thermal effects to action via voltage-gated calcium channel (VGCC) activation. Microwave/lower frequency EMFs were shown in two dozen studies to act via VGCC activation because all effects studied were blocked by calcium channel blockers. This mode of action was further supported by hundreds of studies showing microwave changes in calcium fluxes and intracellular calcium [Ca2+]i signaling. The biophysical properties of VGCCs/similar channels make them particularly sensitive to low intensity, non-thermal EMF exposures. Non-thermal studies have shown that in most cases pulsed fields are more active than are non-pulsed fields and that exposures within certain intensity windows have much large biological effects than do either lower or higher intensity exposures; these are both consistent with a VGCC role but inconsistent with only a heating/thermal role."
"Histological and immunohistochemical examinations between the experimental and control groups showed that exposure to 2.45 GHz EMR for 2 h per day does not interfere with the development of teeth and surrounding tissues. However, there were alterations in the elemental composition of the teeth, especially affecting such oxidative stress-related elements as copper, zinc, and iron, suggesting that short-term exposure to Wi-Fi-induced EMR may cause an imbalance in the oxidative stress condition in the teeth of growing rats."
Cell Phones and their Impact on Male Fertility: Fact or Fiction
Hamada AJ et al, The Open Reproductive Science Journal, januar 2015
"Our bodies act as parasitic antennas that receive these waves and convert them into electric and magnetic fields. While thermal effects at the present level of cell phone radiation are negligible, most of the biological interactions are attributed to non-thermal effects. Male reproductive system is highly compartmentalized and sensitive biological system that requires the integration of intrinsic and extrinsic factors to properly function. The generated electrical currents may alter the hormonal milieu and testicular microenvironment, necessary for sperm production. Additionally, sperm are electrically active cells and their exposure to cell phone electromagnetic waves and currents may affect their motility, morphology and even their count. Leaky plasma membranes, calcium depletion and oxidative stress are the postulated cellular mechanisms mediating the harmful effects of cell phones radiation on sperm and male fertility potentials. Evidences for such impacts come from designed animal and in vitro studies which may be different from in vivo human exposure. Nevertheless, the important advice is to apply strict regulations on further increase in the power density of the emitted cell phone radiation and to conduct in vivo human research to study its negative effects on fertility."
"Electrohypersensitivity can be caused by successive assaults on human bioelectrochemical dynamics from exogenous electromagnetic fields (EMF) and RFR or a single acute exposure. Once sensitized, further exposures are widely reported to cause reactivity to lower and lower intensities of EMF/RFR, at which point thousand-fold lower levels can cause adverse health impacts to the electrosensitive person. Electrohypersensitivity (EHS) can be a precursor to, or linked with, multiple chemical sensitivity (MCS) based on reports of individuals who first develop one condition, then rapidly develop the other. Similarity of chemical biomarkers is seen in both conditions [histamines, markers of oxidative stress, auto-antibodies, heat shock protein (HSP), melatonin markers and leakage of the blood-brain barrier]. Low intensity pulsed microwave activation of voltage-gated calcium channels (VGCCs) is postulated as a mechanism of action for non-thermal health effects."
"Several studies with appropriate methodologies reflect the capacity of electromagnetic radiations to cause adverse health effects and there are several credible mechanisms that can account for the observed effects. Hence, need of the hour is to activate comprehensive well-coordinated blind scientific investigations, overcoming all limitations and demerits of previous investigations especially replication studies to concretize the earlier findings. Furthermore, appropriate exposure assessment is crucial for identification of dose-response relation if any, and the elucidation of biological interaction mechanism. For the time being, the public should follow the precautionary principle and limit their exposure as much as possible."
"Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. "
"Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release."
"The direct targets of extremely low and microwave frequency range electromagnetic fields (EMFs) in producing non-thermal effects have not been clearly established. However, studies in the literature, reviewed here, provide substantial support for such direct targets. Twenty-three studies have shown that voltage-gated calcium channels (VGCCs) produce these and other EMF effects, such that the L-type or other VGCC blockers block or greatly lower diverse EMF effects. Furthermore, the voltage-gated properties of these channels may provide biophysically plausible mechanisms for EMF biological effects."
"2.45 GHz electromagnetic radiation appears to induce proliferative effects through oxidative stress and Ca²⁺ influx although blocking of transient receptor potential melastatin 2 channels by 2-aminoethyl diphenylborinate seems to counteract the effects on Ca²⁺ ions influx."
"The results demonstrate that ELF-MF and Mn can have significant effects on levels of elements in rat teeth. Further experimental and epidemiological studies of ELF-MF and Mn are needed in order to evaluate their dental effects."
Pathophysiology of microwave radiation: effect on rat brain
Kesari KK et al, Appl Biochem Biotechnol, januar 2012
"The study concludes that a reduction in melatonin or an increase in caspase-3, creatine kinase, and calcium ion may cause significant damage in brain due to chronic exposure of these radiations. These biomarkers clearly indicate possible health implications of such exposures."
"Exposure to a 94 GHz irradiation induced a statistically significant increase in the calcium spiking. When co-cultured with neuronal cells in the 3D co-culture skin model, changes in the calcium spiking in neuronal cells depended on the MMW input power. Further, the 94 GHz irradiation caused ATP secretion by keratincytes."
"Compared with sham control group, decreased CB and CR IRs, loss of CB and CR immunoreactive cells and increased GFAP IR exhibiting hypertrophic cytoplasmic processes were noted in both experimental groups. E4 group showed a prominent decrement in CB and CR IR than the E1.6 group due to down-regulation of CaBP proteins and neuronal loss. GFAP IR was more prominent in the E4 group than the E1.6 group. Decrement in the CaBPs can affect the calcium-buffering capacity leading to cell death, while increased GFAP IR and changes in astrocyte morphology, may mediate brain injury due to radiofrequency exposure."
"The results of this study show that intracellular Ca(2+) accumulation in cardiac ventricles can increase in rats exposed to ELF magnetic field."
"Our results could explain one of the mechanisms and sites of action of ELF magnetic fields. A possible explanation of the inhibitory effects of magnetic fields could be a decrease in Ca(2+) influx through inhibition of voltage-gated Ca(2+) channels. The detailed mechanism of effect, however, needs to be further studied under voltage-clamp conditions."
"Even if further studies remain necessary to identify the ROS/intracellular Ca(2+)cross-talking pathway activated by ELF-EMF exposure, we support the hypothesis that ROS and Ca(2+) could be the cellular "primum movens" of the ELF-EMF induced effects on biological systems."
"Statistically significant decrease was found in Mg levels in the ELF-500 exposure group in comparison to sham and ELF-100 exposure groups (p < 0.05). Zn levels were found to be lower in the ELF-500 exposure group than those in the sham and ELF-100 exposure groups (p < 0.05). No significant differences were determined between groups in terms of the levels of P, Cu and Fe. In conclusion, it can be maintained that long-term ELF-MF exposure can affect the chemical structure and metabolism of bone by changing the levels of some important elements such as Ca, Zn and Mg in rats."
"Decrease in CB immunoreactivity (IR) was noted in exposed (E1.6) group with loss of interneurons and pyramidal cells in CA1 area and loss of granule cells. Also, an overall increase in GFAP IR was observed in the hippocampus of E1.6. By TUNEL assay, apoptotic cells were detected in the CA1, CA3 areas and dentate gyrus of hippocampus, which reflects that chronic RF exposure may affect the cell viability. In addition, the increase of GFAP IR due to RF exposure could be well suited with the feature of reactive astrocytosis, which is an abnormal increase in the number of astrocytes due to the loss of nearby neurons. Chronic RF exposure to the rat brain suggested that the decrease of CB IR accompanying apoptosis and increase of GFAP IR might be morphological parameters in the hippocampus damages."
"Body weights did not change significantly. CB immunoreactivity (IR) displayed moderate staining of cells in the cornu ammonis (CA) areas and prominently stained granule cells. CR IR revealed prominently stained pyramidal cells with dendrites running perpendicularly in the CA area. Exposure for 1 month produced almost complete loss of pyramidal cells in the CA1 area. CaBP differences could cause changes in cellular Ca(2+)levels, which could have deleterious effect on normal hippocampal functions concerned with neuronal connectivity and integration."
"Collectively, our data reveal that ELF-EMFs (1) induced reactive oxygen species production in myoblasts and myotubes with a concomitant decrease in mitochondrial membrane potential; (2) activated the cellular detoxification system, increasing catalase and glutathione peroxidase activities; and (3) altered intracellular Ca(2+)homeostasis, increasing the spontaneous activity of myotubes and enhancing cellular reactivity to a depolarizing agent (KCl) or an agonist (caffeine) of intracellular store Ca(2+)channels. In conclusion, our data support a possible link between exposure to ELF-EMFs and modification of the cellular redox state, which could, in turn, increase the level of intracellular Ca(2+)and thus modulate the metabolic activity of C2C12 cells."
"Many but not all observed cellular responses to MMW were similar to thermally induced effects. For example, cell exposure to a 94 GHz field induced nitric oxide production in some morphologically distinct neuronal cells that could not be reproduced by thermal heating of the cells up to 42 degrees C."
"EMF is a stressor agent that induces an imbalance between ROS generation and antioxidant defense response. Calcium ions may play a pivotal role in enhancing oxidative stress, pro-inflammatory reactions and apoptosis associated with EMF exposure. Therefore calcium channel blockade seems to play a role in brain protection."
"While about 60% of control cells (not exposed to RF radiation) were observed to exhibit about five spontaneous Ca(2+) spikes per cell in 60 min, exposure of cells to an 800 MHz, 0.5 W/kg RF radiation, for example, significantly increased the number of Ca(2+) spikes to 15.7 +/- 0.8 (P < 0.05). The increase in the Ca(2+) spiking activities was dependent on the frequency but not on the SAR between 0.5 to 5 W/kg. Using pharmacological agents, it was found that both the N-type Ca(2+) channels and phospholipase C enzymes appear to be involved in mediating increased Ca(2+) spiking. Interestingly, microfilament disruption also prevented the Ca(2+) spikes. Regulation of Ca(2+) dynamics by external physical stimulation such as RF radiation may provide a noninvasive and useful tool for modulating the Ca(2+)-dependent cellular and molecular activities of cells seeded in a 3D environment for which only a few techniques are currently available to influence the cells."
"Transcript accumulation was maximal at normal Ca(2+) levels and was depressed at higher Ca(2+), especially for those encoding calcium-binding proteins. Removal of Ca(2+) (by addition of chelating agents or Ca(2+) channel blocker) led to total suppression of mRNA accumulation. Finally, 30 min after the electromagnetic treatment, ATP concentration and adenylate energy charge were transiently decreased, while transcript accumulation was totally prevented by application of the uncoupling reagent, CCCP. These responses occur very soon after exposure, strongly suggesting that they are the direct consequence of application of radio-frequency fields and their similarities to wound responses strongly suggests that this radiation is perceived by plants as an injurious stimulus."
The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain
Paulraj R, Behari J, Electromag Biol Med, september 2002
"A significant increase in calcium ion efflux and ornithine decarboxylase (ODC) activity was observed in the exposed group as compared to the control. Correspondingly, a significant decrease in the calcium-dependent protein kinase activity was observed. These results indicate that this type of radiation affects the membrane bound enzymes, which are associated with cell proliferation and differentiation, thereby pointing out its possible role as a tumor promoter."
"We demonstrate that a 50- to 60-Hz magnetic field interacts with cell differentiation through two opposing mechanisms: it antagonizes the shift in cell membrane surface charges that occur during the early phases of differentiation and it modulates hyperpolarizing K channels by increasing intracellular Ca. The simultaneous onset of both mechanisms prevents alterations in cell differentiation. We propose that cells are normally protected against electromagnetic insult. Pathologies may arise, however, if intracellular Ca regulation or K channel activation malfunctions."
"A comparison between the resulting averages showed that the total spectral power of the cytosolic Ca2+ oscillator was reduced by exposure of the cells to an alternating magnetic field and that the effect increased in an explicit dose-response manner. The same relationship was observed within the 0-10 mHz (10 x 10(-3) Hz) subinterval of the Ca2+ oscillation spectrum. For subintervals at higher frequencies, the change caused by the exposure to the magnetic field was not significant."
"These findings support the above ST hypothesis and provide experimental evidence for a general biological framework for understanding magnetic field interactions with the cell through signal transduction. In addition, these findings indicate that magnetic fields can act as a co-stimulus at suboptimal levels of mitogen; pronounced physiological changes in lymphocytes such as calcium influx and c-MYC mRNA induction were not triggered by a weak mitogenic signal unless accompanied by a magnetic field. Magnetic fields, thus, have the ability to potentiate or amplify cell signaling."
"Cells were exposed to a 50 Hz, 0.1 mT, sinusoidal magnetic field while intracellular free calcium was measured in individual cells, using fura-2 as a probe. An acute response was observed with oscillatory increases in [Ca2+]i, which subsided when the field was turned off. The effect of the magnetic field on [Ca2+]i was comparable to that achieved by an anti-CD3 monoclonal antibody."
"This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells and then closely examines new results that suggest a role for Ca2+ in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca2+ signaling processes are involved in the mediation of field effects on the immune system."
"Tissue exposure to extremely low frequency (ELF) and ELF-modulated microwave fields at levels below those inducing significant thermal effects has revealed highly nonlinear mechanisms as a basis for observed effects. Interactions of phonons and excitons along linear molecules may produce nonlinear molecular vibrations in the form of soliton waves."

Podprite naš projekt

Z donacijo lahko podprete naše delo, da bomo še naprej lahko objavljali kakovostne vsebine. Hvala, ker nas podpirate!
2€
5€
10€
20€
Vsa vsebina na spletni strani (razen slik) je pod licenco Creative Commons (CC BY 4.0). Prosto kopirajte, prilagajajte in razširjajte naprej.